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Abstract. We reconsider energy calculations of the spin polarized ν = 1/2 Chern-Simons theory. We show
that one has to be careful in the definition of the Chern-Simons path integral in order to avoid an IR
divergent magnetic ground state energy in RPA as in [J. Dietel et al, Eur. Phys. J. B 5, 439 (1998)].
We correct the path integral and get a well behaved magnetic energy by considering the energy of the
maximal divergent graphs as well as the Hartree-Fock graphs. Furthermore, we consider the ν = 1/2 and
the ν = 5/2 system with spin degrees of freedom. In doing this we formulate a Chern-Simons theory of the
ν = 5/2 system by transforming the interaction operator to the next lower Landau level. We calculate the
Coulomb energy of the spin polarized as well as the spin unpolarized ν = 1/2 and the ν = 5/2 system
as a function of the interaction strength in RPA. These energies are in good agreement with numerical
simulations of interacting electrons in the first as well as in the second Landau level. Furthermore, we
calculate the compressibility, the effective mass and the excitations of the spin polarized ν = 2 + 1/φ̃
systems where φ̃ is an even number.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
73.40.Hm Quantum Hall effect (integer and fractional) – 71.27.+a Strongly correlated electron systems;
heavy fermions

1 Introduction

The combination of an electronic interaction and a strong
magnetic field in a two-dimensional electron system yields
a rich variety of phases. These are best classified by the
filling factor ν, which is the electron density divided by the
density of a completely filled Landau level. In this work we
mainly consider energy calculations on systems with fill-
ing factors ν = 1/2 and ν = 5/2. These system are most
suitably described by the Chern-Simons theory. In solid
state physics this theory is mainly used in the fields of
the fractional quantum Hall effect and high temperature
superconductivity. The applications of the Chern-Simons
theory in the field of high-temperature superconductivity
is based on a work of Polyakov [1]. Since the discovery of
the fractional quantum Hall effect by Tsui, Störmer and
Gossard (1982) [2] there were many attempts to explain
this experimental observation. The current Chern-Simons
type theories of this effect are mainly based on a work of
Jain (1989) [3]. In his theory he mapped the wave func-
tions of the integer quantum Hall effect to wave functions
of the fractional quantum Hall effect. In the case of fill-
ing fraction ν = 1/2 every electron gets two magnetic flux
quantums through this mapping. By this transformation
one gets new quasi-particles (composite fermions) which
do not see any magnetic field in first approximation (mean
field). A field theoretical language for this scenario was
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first established by Halperin, Lee, Read (HLR) (1992) [4]
as well as Kalmeyer and Zhang (1992) [5] for the ν = 1/2
system. The interpretation of many experiments supports
this composite fermion picture. We mention transport ex-
periments with quantum (anti-) dots [6], and focusing ex-
periments [7] here. An overview of further experiments can
be found in [8].

HLR studied many physical quantities within the
random-phase approximation (RPA). Most prominent
among these is the effective mass of the composite
fermions which they found to diverge at the Fermi sur-
face [4,9]. Recently, Shankar and Murthy [10] proposed a
new theory of the ν = 1/2 system. Based upon a trans-
formation of the Chern-Simons Hamiltonian one achieves
a separation of the magneto-plasmon oscillators from the
total interaction of the system. After restricting the num-
ber of the magneto-plasmon oscillators to the number of
electrons they got a finite quasi-particle mass which scales
with the inverse of the strength of the Coulomb repulsion.
In this derivation they calculate a smaller number of self
energy Feynman graphs than in the RPA. Just recently
Stern et al. [11] calculated the self energy Feynman graphs
for the theory of Shankar and Murthy in RPA and got the
same divergence of the effective mass as HLR. Besides the
theory of Shankar and Murthy there are other alternative
formulations of the composite fermionic picture which are
formulated entirely in the lowest Landau level [12–14].
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In the following we will use mainly the Chern-Simons
theory of HLR to calculate ground state energies of the
ν = 1/2 and the ν = 5/2 system. To get composite
fermions one has to transform the electronic wave func-
tion with a rather singular transformation. Due to this
transformation one gets a density-density interaction of
the form ∼ 1/k2 for small wave vectors. Because of this
singular interaction the singular diagrams in leading order
should be resummed. These diagrams are well known as
the RPA in the jellium problem in d = 3. We have shown in
an earlier publication [15] that despite of resumming these
singular diagrams one gets an IR-divergence in the canon-
ical potential of the ν = 1/2 system in RPA due to the
∼ 1/k2 interaction. Thereby we used the Chern-Simons
path integral of HLR for the resummation of the diagrams.
We obtained further that the Coulomb part of the energy
is finite and in good agreement with the Coulomb energy
of numerical simulations of interacting electrons in the
lowest Landau level by Morf and d’Ambrumenil [20] as
well as Girlich [21]. We have to mention that Conti and
Chakraborty [16] got an excellent agreement with the nu-
merical results by calculating the Coulomb energy with
the help of the STLS theory [17] which is a generalisation
of the RPA theory. In the following it is shown that we
obtained an IR divergence of the magnetic energy in our
earlier work because the normal ordering of the Chern-
Simons Hamiltonian was not properly taken into account
in the path integral of HLR. In [18] we correct this er-
ror with the help of an intermediate time technique in
the path integral and a change of the coupling between
the fermion fields and the bosonic fields. One can show
that this path integral has a finite energy in the RPA. De-
tails of the analysis of the RPA for this path integral will
be published elsewhere. In the case of the Coulomb gas,
the Hartree-Fock graphs belong to the maximal divergent
Feynman graph [19]. This is no longer valid for the Chern-
Simons theory. For this theory we will get a finite energy
for the spin polarized ν = 1/2 system by calculating the
energy of all Feynman-graphs which belong either to the
Hartree-Fock graphs or to the maximal divergent graphs
(for a given number of interaction vertices). With the help
of this principle one gets a well-suited finite approxima-
tion of the magnetic energy. Furthermore, we get the same
Coulomb energy as in [15].

In the second part of this work we will calculate the
Coulomb energy of the ν = 1/2 and the ν = 5/2 system
including the spin degree of freedom. The ν = 5/2 system
is of theoretical interest because it consists of one Landau
level filled with spin up and spin down electrons. Like in
the ν = 1/2 system the second Landau level is half filled
with electrons. So the ν = 5/2 system should have similar
physical properties as the ν = 1/2 system. As a matter of
fact this is not the case. Eisenstein et al. [22] were able
to show with the help of tilted field experiments that the
ground state of the ν = 5/2 system is spin unpolarized
and incompressible. This is different to the ground state
of the ν = 1/2 system, which is spin polarized and com-
pressible. Numerical simulations of the ground state of the
ν = 1/2 and the ν = 5/2 system [23,24] show that one

gets a transition from a spin unpolarized ground state to
a spin polarized ground state depending on the strength
of the interaction between the electrons. For calculating
this transition with perturbational methods we will con-
struct a Chern-Simons theory of the ν = 2 + 1/φ̃ systems
where φ̃ is an even number by transforming the Coulomb
interaction of the second Landau level to the first Landau
level. By neglecting the lowest Landau level, the ν = 5/2
system behaves like a ν = 1/2 system with an altered in-
teraction potential. Because of this we can calculate the
Coulomb part of the energy of the ν = 5/2 system within
the RPA formalism of the ν = 1/2 system. It will be shown
that one gets a transition from a spin polarized to a spin
unpolarized ground state for the ν = 1/2 system as well
as for the ν = 5/2 system depending on the interaction
strength. This transition is in qualitative agreement with
the numerical simulations [23,24]. Furthermore, we will
use the Chern-Simons theory of the ν = 2 + 1/φ̃ systems
to calculate the compressibility, the effective mass and the
excitations.

As mentioned above we will treat the energy problem
of the ν = 1/2 and the ν = 5/2 Chern-Simons system
in RPA. The use of this approximation is motivated by
the similarity of the interaction potentials of these two
systems to the one of the d = 3 jellium problem. It is well
known that for the latter a perturbational calculation of
the ground state energy results in a good approximation
especially for small densities (which is a small parameter
in this theory). Such a small parameter is not existent
in the ν = 1/2 Chern-Simons theory. Until now it is not
clear whether the RPA calculations of the ground state
energy in Chern-Simons theories are in agreement with
the experiments. One aim of this paper is to make one
step further to a positive answer to this question.

The paper is organized as follows: In Section 2 we re-
consider the polarized ν = 1/2 system with the help of
a path integral which takes the normal ordering of the
Chern-Simons Hamiltonian into account. We calculate the
energy of the maximal divergent graphs together with
the Hartree-Fock Feynman graphs of the Chern-Simons
Hamiltonian. In Section 3 we formulate the RPA theory of
the ν = 1/2 Chern-Simons theory subjected to a spin con-
straint. In Section 4 we formulate a Chern-Simons theory
of the ν = 2 + 1/φ̃ systems and calculate the compress-
ibility, the effective mass and the excitations in RPA. In
Section 5 we calculate the Coulomb ground state energy of
the spin polarized as well as the spin unpolarized ν = 1/2
and ν = 5/2 systems.

2 The ground state energy of the spin
polarized ν = 1/2 system

In this section we consider interacting spin polarized elec-
trons moving in two dimensions in a strong magnetic
field B directed in the positive z-direction of the sys-
tem. The electronic density of the system is chosen such
that the lowest Landau level of a non-interacting system
is filled to a fraction ν = 1/φ̃ where φ̃ is an even number.
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We are mainly interested in φ̃ = 2. After perform-
ing a Chern-Simons transformation [26] of the electronic
wave function one gets the Hamiltonian of the composite
fermions as:

HCS =
∫

d2r

[
1

2m

∣∣(− i∇+ A + aCS

)
Ψ(r)

∣∣2 (1)

+
1
2

∫
d2r′

{
(|Ψ(r)|2

−ρB)V ee(|r− r ′|)(|Ψ(r ′)|2 − ρB)
}]
.

The Chern-Simons operator aCS is defined by aCS(r) =
φ̃
∫

d2r′ f(r − r ′)Ψ+(r ′)Ψ(r ′). Here Ψ+(r) creates (and
Ψ(r) annihilates) a composite fermion with coordinate r.
V ee(r) = e2/r is the Coulomb interaction where e2 = q2

e/ε.
qe is the charge of the electrons and ε is the dielectric
constant of the background field ρB. A(r) is the vector
potential A = 1/2 B× r and B is a homogeneous mag-
netic field in z-direction B = Bez where ez is the unit
vector in z-direction. We suppose throughout this paper
that B is a positive number. The function f(r) is given
by f(r) = −ez × r/r2. We used the convention ~ = 1
and c = 1 in the above formula (1). Furthermore, we set
qe = 1 for the coupling of the magnetic potential to the
electrons. It is well known, that the partition function of
the Hamiltonian (1) can be written in an operator formal-
ism [1] with the help of the bosonic Chern-Simons fields
(a0(r, t),a(r, t)). This is shown in the first quantized path
integral language. Using standard methods [27] we can
transform this partition function to a path integral. This
path integral is written as

Z1/2 = lim
ε→0

1
N1/2

Nl∏
l=1

∫
BC

D[a0
l ,al, σl]D[Ψ∗l , Ψl] (2)

× exp
[
−ε
(
Ll + LCS,l + Lee,l + L0

ee,l

)]
.

The various functions in (2) are given by

Ll =
∫

d2r Ψ∗l (r)
1
ε

(Ψl(r)− Ψl−1(r)) (3)

−Ψ∗l (r)
(
µ+

(
1 +

ε

2
a0
l (r)

)
a0
l (r)

)
Ψl−1(r)

+
1

2m
Ψ∗l (r) (−i∇+ A(r) + al(r))2

Ψl−1(r) ,

LCS,l =
1

2πφ̃

∫
d2r a0

l (r)∇× al(r) , (4)

Lee,l =
∫

d2r d2r′σl(r) V ee(|r− r ′|)

×(Ψ∗l (r ′)Ψl−1(r ′)− ρB) , (5)

L0
ee,l = −1

2

∫
d2r d2r ′ σl(r) V ee(|r− r ′|) σl(r ′) , (6)

together with the norm

N1/2 =
Nl∏
l=1

∫
BC

D[a0
l ,al, σl] exp

[
−ε
(
LCS,l + L0

ee,l

)]
. (7)

The path integral (2) is correct under the gauge condi-
tion ∇ · al = 0. a0

l is a imaginary field. al and σl are
real fields. The time slices ε are defined as ε = β/Nl. The
index l counts the discrete time slices. Furthermore, we
have anti-periodic boundary conditions ΨNl = −Ψ0 for
the Grassmann fields [27]. The action of the path inte-
gral (2) is given by a fermionic term Ll, a bosonic term
LCS,l of the Chern-Simons form, and two Coulomb interac-
tion terms Lee,l, L0

ee,l. In comparison to the Chern-Simons
path integral of HLR [4] which was used in our earlier
publication [15] we get an additional term proportional to
εa0
l (r)2 in Ll (3). This term is mainly due to the normal-

ordering of the Ψ6 term in the Chern-Simons Hamiltonian
HCS (1). This is most easily seen by integrating the path
integral (2) over the Chern-Simons fields. Due to the ad-
ditive term one can not perform the formal limit ε → 0
in (2). This limit has to be taken in every additive term
after the integration over the Chern-Simons and fermionic
fields. Furthermore, we have to remark, that we treat the
same formalism as above in order to derive the path in-
tegral of Shankar and Murthy [10,11]. There we get no
additional term in comparison to their path integral [28].

In the following we integrate (2) over the fermionic
fields. Using a mean-field expansion of the result up to the
second order in the bosonic fields one gets after integration
for the grand-canonical potential Ω = Ω0 + ΩRPA. Ω0 is
the grand-canonical potential of the Coulomb-free electron
gas. We now split ΩRPA into a variety of terms for which
one can take the limit ε→ 0 rather easily [15].

ΩRPA = ΩR + F ee + FCS +H . (8)

The expression ΩR corresponds to the RPA graphs which
do not belong to the Hartree-Fock graphs. F ee + FCS are
the Coulomb and Chern-Simons Fock diagrams.H are the
Hartree diagrams. We will see below that the Hartree term
is due to the normal ordering of the Ψ6-term in (1). For
temperature T = 0, ΩR is given by

ΩR =
1

2(2π)3

∫
dω d2q

[
log (1 + CS(q, ω) +EM(q, ω))

−CS1(q, ω)−EM(q, ω)
]
. (9)

The functions CS, CS1 and EM are defined as

CS = −(2πφ̃)2 1
q2
Πa0a0

(
Πaa +

µ

2π

)
, (10)

CS1 = −(2πφ̃)2 1
q2
Πa0a0

µ

2π
, (11)

EM = −e2 2π
q
Πa0a0 . (12)

EM is the Coulomb term and CS is the Chern-Simons
term of the RPA formula. The second and third sum-
mands EM and CS1 in (9) are given by the first order
graphs of the RPA which have to be subtracted for treat-
ing equal time Green’s function in the right way [15]. The
density-density response function Πa0a0 (q, ω, µ) and the
transversal current-current response function Πaa (q, ω, µ)
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are given in (A.2) of Appendix A. The Hartree-Fock terms
of ΩRPA are given by

H =
1
2

(2πφ̃)2 mµ
2

(2π)4

∫
d2q

1
q2

, (13)

FXX =
1

2 (2π)3
(14)

×
∫

d2kd2q nF (k, µ)nF (q, µ)V XX(|k− q|).

The function nF (q, µ) is the fermion occupation factor for
the chemical potential µ. The vertices V XX are defined by

V ee(q) = e2 1
q

, V CS(q) = φ̃2µ
1
q2
· (15)

Here V ee is the Coulomb vertex. V CS is the Chern-Simons
vertex ∼ 1/q2 mentioned in the introduction. Comparing
ΩRPA with the analogous expression in [15] the only differ-
ence between the two expressions is the Hartree term H
in (13), which corresponds to a Hartree Feynman graph
of HCS (1) resulting from the normal ordering of the Ψ6

term. It is shown in [15], that ΩRPA−NO is IR-divergent.
This is based on the IR-divergence in FCS. The additive
term H shifts this IR-divergent grand canonical potential
in [15] to an UV-divergent grand canonical potential ΩRPA.
As mentioned above FCS and H belong to the Hartree-
Fock Feynman graphs of HCS. Therefore, if we calculate
the energy of all Hartree-Fock Feynman graphs in addition
to ΩR we will get a finite energy because the Hartree-Fock
energy of HCS (1) has to be finite. Furthermore, it is easily
seen thatΩR corresponds to the maximal divergent graphs
for a given number of vertices. To get a good approxima-
tion of the energy we take into account in the following
the maximal divergent graphs (per number of vertices)
together with the Hartree-Fock graphs. As mentioned in
the introduction this energy principle is also used for a
calculation of the ground state energy of the Coulomb gas
by many authors (e.g. [19]). In order to calculate that en-
ergy we have to determine at first the Hartree-Fock energy
of HCS. Sitko calculated in [29] the Hartree-Fock energy
of the magnetic part of HCS. The Coulomb part of the
Hartree-Fock energy consists only of F ee (14). This inte-
gral is easily evaluated yielding

UHF =
m

4π
µ2 +

3m
16π

φ̃2µ2 − 2
√

2
3π2

e2m
3
2µ

3
2 (16)

for the Hartree-Fock energy of the Chern-Simons
Hamiltonian HCS. The first term in (16) is the kinetic
energy of the composite fermions. For the ν = 1/2 system
we have to insert φ̃ = 2 into UHF. Doing this we obtain
two times the value of the exact magnetic energy for UHF

(µ = (2π)ρ/m).
With the help of an e2-expansion of ΩR in (9) we can

calculate the coefficients of the expansion for the ν = 1/2
system numerically:

ΩR = −0.19mµ2 − 0.038 e2m
3
2µ

3
2 +O(e4) . (17)

The electron density ρ is given by µ = ρ/(2πm). This can
be motivated by the Luttinger-Ward theorem [30] under
the consideration that there are no anomalous graphs in
our approximation of the energy. Thus we get from (16, 17)

UTh ≈ 5.06
ρ2

m
− 2.11e2ρ

3
2 , UNum ≈ 6.28

ρ2

m
− 1.67e2ρ

3
2

for the energy density UTh = UHF + ΩR of the ν = 1/2
system. It is evident by the selection principle of the cal-
culated Feynman graphs that the Coulomb energy part
in UTh is the same as in [15]. To compare our pertur-
bative result for the energy with the energy obtained by
other methods we have written down in UNum the exact
magnetic energy and the Coulomb energy obtained by nu-
merical diagonalization techniques. This Coulomb energy
was calculated by Morf and d’Ambrumenil [20] as well
as Girlich [21] by diagonalization of the Coulomb part of
the Hamiltonian for electrons on a sphere in the lowest
Landau level. One sees that the perturbational and the nu-
merical calculated energies are in satisfactory agreement.

3 The Coulomb energy of the ν = 1/2
system including constraints on the total spin

In the ν = 1/2 as in the ν = 5/2 system appears an in-
teresting phase transition from a spin unpolarized ground
state to a spin polarized ground state by modifying the in-
teraction strength between the electrons. In the next few
sections we will see, that this physical phenomenon al-
ready exists on the level of the RPA of the Chern-Simons
theory. To show this we have to add a spin constraint
variable into the Chern-Simons path integral. Without
this spin-constraint variable the ν = 1/2 Chern-Simons
path integral is written as in (2) with a doubling of the
fermionic Grassmann fields representing the spin-up and
spin-down freedom of the electrons. In the following we
denote by c+↑ (r), (c+↓ (r)) the creation operator of one com-
posite fermion at point r with spin-up (spin-down). c↑(r),
(c↓(r)) annihilates one composite fermion with spin-up
(spin-down) at point r.

The total spin in the xy-plane is given by

S2
x + S2

y =
∫

d2r

(
1
2
c+↑ (r) c↑(r) +

1
2
c+↓ (r) c↓(r)

)
+ S2

Mod,

S2
Mod = −

∫
d2r d2r′ c+↑ (r) c+↓ (r ′) c↓(r) c↑(r ′) . (18)

Furthermore, we define fromHCS (1) a new spin constraint
Chern-Simons Hamiltonian Hs

CS by Hs
CS = HCS−µsS2

Mod.
We will fix the total spin S2 = S2

x + S2
y + S2

z by the con-
straint such that S2 is minimal for a given Sz. This is
the case if S2 = |Sz| (|Sz|+ 1). One can get this con-
straint on S2 by differentiating −1/β log(Zs) with respect
to µs. Thereby we denote the partition function of Hs

CS by
Zs. Thus we get the following conditions on the partition
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function Zs

− 1
β

(
∂

∂µ↑
+

∂

∂µ↓

)
log(Zs) = 〈|N |〉 ,

−1
2

1
β

(
∂

∂µ↑
− ∂

∂µ↓

)
log(Zs) = 〈|Sz|〉 ,

1
β

∂

∂µs
log(Zs) = −1

4
1
β2

(
∂

∂µ↑
− ∂

∂µ↓

)2

log(Zs)

−1
2
〈|N |〉+ |〈|Sz |〉| . (19)

The symbol 〈| · |〉 is the expectation value in the Gibb’s
state of the Hamiltonian Hs

CS. N is the particle number
operator N =

∫
d2r c+↑ (r)c↑(r) + c+↓ (r)c↓(r). µ↑ and µ↓

are the chemical potentials of the system representing the
spin-up and spin-down electrons. Furthermore, we have to
mention that one has to be careful in using equation (19).
This is because the first term on the right hand side of
equation (19) equals to 〈|S2

z |〉− 〈|Sz|〉2 for a finite system.
This is no longer the case for an infinite system (an exam-
ple is the kinetic Hamiltonian). Thus one has to differen-
tiate first for a finite system and afterwards take the limit
to an infinite system. We are now able to write down the
ν = 1/2 Chern-Simons path integral. Using the Hubbard-
Stratonovich decoupling of the fermionic fields in the op-
erator S2

Mod we get

Zs1/2 = lim
ε→0

1
N
s

1/2

Nl∏
l=1

∫
BC

D[a0
l ,al, σl, σ

s
l ]D[c∗κ,l, cκ,l] (20)

× exp
[
−ε
(
Lsl + Ls,l + Lee,l + L0

ee,l + LCS,l + L0
s,l

)]
with the help of

Lsl =
∑

κ∈{↑,↓}

∫
d2r c∗κ,l(r)

1
ε

(cκ,l(r) − cκ,l−1(r))

−c∗κ,l
(
µκ +

(
1 +

ε

2
a0
l (r)

)
a0
l (r)

)
cκ,l−1(r)

+c∗κ,l(r)
1

2m
(−i∇+ A(r)

+al(r))2
cκ,l−1(r), (21)

Lee,l =
∫

d2r d2r ′ σl(r) V ee(|r− r ′|)

×
( ∑
κ∈{↑,↓}

c∗κ,l(r
′)cκ,l−1(r ′)− ρB

)
, (22)

Ls,l = µs

∫
d2r d2r′ σsl (r)

(
c∗↑,l(r

′) c↓,l−1(r ′)
)
, (23)

L0
ee,l = −1

2

∫
d2r d2r′ σl(r) V ee(|r− r ′|) σl(r ′) , (24)

L0
s,l = −µs

4

∫
d2r d2r′ (σsl (r)σsl (r

′)) (25)

and the normalizing factor

N
s

1/2 =
Nl∏
l=1

∫
BC

D[a0
l ,al, σl, σ

s
l ]

× exp
[
−ε
(
LCS,l + L0

ee,l + L0
s,l

)]
. (26)

The terms Ls,l, L0
s,l in (20) are given by the Hubbard-

Stratonovich decoupling of the spin term S2
Mod. After in-

tegrating in (20) over the fermionic fields we get the fol-
lowing mean-field equations for the bosonic fields

∇× al = (2πφ̃)B , a0
l = 0 ,

σl = 0 , σsl = 0 .
(27)

The mean-field Green’s function is given by Gs(q, ω) =
(−1/(iω − q2/(2m) + µ↑),−1/(iω − q2/(2m) + µ↓)). In-
tegrating this mean-field expansion to second order of
the bosonic fields we get for the grand canonical poten-
tial Ωs1/2 = Ωs0 + ΩsRPA. Ωs0 is the grand canonical po-
tential for a spin dependent electron gas without inter-
action. As we do not have any anomalous graphs, we
want to make use of the Luttinger-Ward theorem [30].
This theorem states that a good approximation is ob-
tained for µ↑ , µ↓ if one uses m(µ↑ + µ↓)/(2π) = ρ
and m(µ↑ − µ↓)/(4π) = 〈|Sz |〉/F . F is the area of the
system. As a function of µ↑, µ↓, the expectation value
〈|Sz|〉 behaves like a step function for a finite system.
Because the first term on the right hand side of equa-
tion (19) is −1/(2β) (∂/∂µ↑ − ∂/∂µ↓) 〈|Sz |〉 we observe
that this term is zero. Because Ω0 does not depend on
µs, it can not fulfill the spin constraint equation (19).
On the other hand it is clear that the ground state of
the mean-field Hamiltonian fulfills the spin constraint
〈|S2|〉 = |〈Sz〉|(|〈Sz〉| + 1). For this reason Ω0 together
with the grand canonical potential of the exchange graph
of S2

Mod (18) fulfills the spin constraint equation (19) (The
exchange graph is a part of ΩsRPA). Furthermore, we have
to mention that the exchange part of S2

Mod is the only part
of ΩsRPA which is linear in µs. Thus the spin constraint
equation (19) is fulfilled for µs = 0. In the following we
denote Π(q, ω, µ↑)+Π(q, ω, µ↓) by Πd(q, ω, µ↑, µ↓). Π are
the diverse response functions of Appendix A. After some
transformations and an expansion in e2 we get with the
help of the functions

CSs = −(2πφ̃)2 1
q2
Πd
a0a0

(
Πd
aa +

µ↑ + µ↓
2π

)
, (28)

EM1/2 = −(2π)V ee(q)Πd
a0a0 , (29)

F ee
1/2 = −

∑
κ∈{↑,↓}

1
2(2π)3

(30)

×
∫

d2kd2qV ee(|k− q|)nF (k, µκ)nF (q, µκ)

the e2-part of the grand-canonical Ωs1/2 as

Ωee
1/2 = F ee

1/2 (31)

+
1

2(2π)3

∫
dω d2q

(
1

(1 + CSs(q, ω))
− 1
)
EM1/2(q, ω).
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After developing the Chern-Simons theory of the ν = 5/2
system in the next section, we will calculate Ωee

1/2 in Sec-
tion 5 numerically.

4 The Chern-Simons theory of the ν = 5/2
system

The ν = 5/2 system consists of one lowest Landau level
filled by spin up and spin down electrons. The second
Landau level is half filled. After performing the Chern-
Simons transformation of the Hamiltonian of this system
one does not get a mean field free theory as in the case
of the ν = 1/2 system. It is clear that the filled lowest
Landau level of the ν = 5/2 system should not have much
relevance for the physical properties. Thus we will con-
sider the ν = 5/2 system as a ν = 1/2 system with a
modified interaction potential between the electrons. If
we define an isometric transformation which transforms a
wave function of a higher Landau level to the next lower
Landau level then the calculation of the Coulomb energy
in the second Landau level corresponds to the calculation
of the energy of the first Landau level with the trans-
formed interaction potential of the electrons. If one calcu-
lates the Coulomb energy by perturbational methods then
this transformation should not change the wave function
too much. We will develop in the following an isometric
transformation which leaves the center of mass of the wave
function invariant.

The ladder operators between Landau levels are de-
fined with the help of the operators Πx

L = −i∂x + Ax

and Πy
L = −i∂y +Ay by

ΠL = Πx
L − iΠy

L, Π+
L = Πx

L + iΠy
L . (32)

The ladder operators act on a wave function belonging to
the nth Landau level as follows

Π+
L |n, q〉 =

√
2B(n+ 1) |n+ 1, q〉 ,

ΠL|n, q〉 =
√

2Bn |n− 1, q〉. (33)

With the help of some commutation relations [31] one can
easily see that

1
2B(n+ 1)

〈n, q|ΠL xΠ
+
L |n, q〉 = 〈n+ 1, q|x|n+ 1, q〉

1
2Bn

〈n, q|Π+
L xΠL|n, q〉 = 〈n− 1, q|x|n− 1, q〉. (34)

A similar relation holds for the y-coordinate. The partial
isometric transformation P which descends the Landau
level functions is given by

P |n, q〉 := |n− 1, q〉 . (35)

With the help of the ladder operators (32) the operator P
is written by

P =
ΠL

(2B)
1
2

+Π+
LΠ

2
L

1
(2B)

3
2
√

2

(
1−
√

2
)

+Π+2
L Π3

L

1
(2B)

5
2 2
√

3

(
1 +
√

3
(

1−
√

2
))

+Π+3
L Π4

LO

(
1
B

7
2

)
. (36)

It is easily seen from equation (36) that the nth term in P
transforms a wave function which belongs to the nth low-
est Landau level to zero. The higher order terms in P are
motivated by the different normalization factors of the in-
dividual Landau levels in equation (33). We observe from
the equations (33) and (34) that the operator P leaves the
center of mass coordinate of one Landau level function in-
variant.

We will use this operator P for transforming the
Coulomb interaction to one lower Landau level. Almost
all publications carrying out ground state energy calcula-
tions of the ν = 1/2 and the ν = 5/2 system by numeri-
cal methods do not take into account Landau level split-
ting [20,23,24]. In these calculations one diagonalizes the
Coulomb interaction operator in the second Landau level
in the case of the ν = 5/2 system. It is easily seen from
perturbation theory that this energy is given by the e2-
term of the Coulomb energy. Because we want to compare
the energy given by perturbational calculations and nu-
merical calculations we can neglect the higher order 1/B
terms in P under the condition of calculating the Coulomb
energy to order e2. So we get for the isometric partially
transformed Coulomb interaction operator

Vee
5/2 = e2 1

(2B)2

∫
d2r d2r′ ΠLΨ

+(r)ΠLΨ
+(r ′)

× 1
|r− r ′| Π

+
LΨ(r ′)Π+

L Ψ(r) . (37)

B is given by (2πφ̃)ρ where ρ is the density of the elec-
trons in the second Landau level. Since one does not start
from a Chern-Simons transformed wave function in the
lowest Landau level in the perturbational calculation but
from a Slater determinant of plane waves, one should also
take into account higher order terms of P in perturbation
theory. According to equation (33) these only differ from
the first order term by a normalizing factor. Therefore
we will fix an effective B-field Beff in equation (37) when
proceeding

P ≈ (1/
√

2Beff)ΠL. (38)

This effective field will be brought into line with prop-
erty (36). The Chern-Simons transformed operator PCS of
P is constructed from P in (36) by the substitution A→
A+a. It is approximated through PCS ≈ (1/

√
2Beff)ΠL,CS

with the operator ΠL,CS constructed from ΠL by the sub-
stitution A→ A+a. The ν = 5/2 Chern-Simons path in-
tegral Zs5/2 is constructed from the ν = 1/2 Chern-Simons
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path integral Zs1/2 by the substitution Lee,l → L
5/2
ee,l. The

function L
5/2
ee,l is given by

L
5/2
ee,l =

∫
d2r d2r′ σl(r) V ee(|r− r ′|) (39)

×
( ∑
κ∈{↑,↓}

PCS c
∗
κ,l(r

′) P+
CS cκ,l−1(r ′)− ρB

)
.

The background field ρB is given by

ρB =
∑

κ∈{↑,↓}
〈|PCS c

+
κ (r) P+

CScκ(r)|〉 . (40)

PCS is constructed from P in (36) by the substitution A→
A + aCS. Because of this equation the Hartree graphs in
the ν = 5/2 Chern-Simons theory are cancelled by the ρB

couplings. Like in the ν = 1/2 system we are able to calcu-
late the Coulomb energy of the path integral Zs5/2 in RPA.
Like in the case of the ν = 1/2 system we obtain µs = 0
with the inclusion of the spin constraint (19). We now cal-
culate the Coulomb energy of the path integral (20, 39)
with the approximation PCS ≈ (1/

√
2Beff)ΠL,CS in RPA.

This approximation is also used in (40). For this we define
the ν = 5/2 Coulomb potential by V ee

5/2(r) = e2/(2Beffr).
With the help of the expressions

EM5/2 = 2 (2πφ̃)
2πi
q
V ee

5/2(q)Πd
σa0Πd

aσ (41)

−(2πφ̃)2 2π
q2
V ee

5/2(q)Πd
a0a0Πd

σaΠ
d
aσ

−(2πφ̃)2 2π
q2
V ee

5/2(q)
(
Πd
aa +

µ↑ + µ↓
2π

)
Πd
σa0Πd

a0σ ,

F ee
5/2 = −

∑
κ∈{↑,↓}

(42)

1
2(2π)3

∫
d2k d2q k2q2 V ee

5/2(|k− q|) nF (k, µκ)nF (q, µκ)

we get the RPA Coulomb energy by

Ωee
5/2 = F ee

5/2 (43)

+
1

2(2π)3

∫
dω d2q

1
(1 + CSs(q, ω))

EM5/2(q, ω) .

The several response functions Π in (41) are defined
in (A.1) of the appendix. Now we have to fix the effec-
tive magnetic field Beff by perturbational methods. We
will treat at first the case of a spin polarized ground state
(we have to insert µ↓ = 0 and Π(q, ω, µ = 0) = 0 in (41)
and (42)). For fixing Beff we have look for the main con-
tributions to the momentum integrals of Ωee

5/2 in (43). We
will fix Beff so that we get for these momentums the same
integrand as we would calculate the path integral (20, 39)
with the exact operator P (36) in L5/2

ee,l. Numerical integra-
tion of the two terms in Ωee

5/2 (43) yields results for F ee
5/2

which are about a factor 3 smaller compared to the sec-
ond term. This is in contrast to the ν = 1/2 system. When
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fixing 1/B2
eff in V ee

5/2 there is no impact on the proportion
of the two terms. Thus we use the second term in (43) for
fixing Beff. After performing the ω integration in (43) the
q integrand of the second term has the largest contribu-
tion to the energy for q ≈ 0. This is shown in Figure 1.
Thus the ring momentums k ≈ kF are the most impor-
tant wave vectors in the calculation of the response func-
tions (A.1) in order to calculate the ground state energy
of the ν = 5/2 system. This is due to a nF (k+q)−nF (k)
term as a result of integrating (A.1) over the ring frequen-
cies. Thus we find the following equation to get the same
q ≈ 0-integrand in the second term in (43) using the exact
PCS (36) and its approximation (38) in the path integral

〈ukF |PCSP
+
CS|ukF 〉

∣∣∣
a=A

(44)

=
1

2Beff

〈ukF |ΠL,CSΠ
+
L,CS|ukF 〉

∣∣∣
a=A

=
1

2Beff

k2
F .

ukF is the one particle function ukF = 1/
√
F exp[ikF r]

where kF is a vector of length kF =
√

2mµ. Furthermore,
we have to insert the mean-field condition a = A in PCS

of equation (44). By using the definitions (35, 36) the left
hand side of equation (44) is equal to

〈ukF |PCSP
+
CS|ukF 〉

∣∣∣
a=A

(45)

= lim
k→0
〈uk|P P+ |uk〉

∣∣∣
BH=k2 Beff/k2

F

= 1 .

In this equation P is calculated with the vector potential
A = BH/2 (−y, x). The magnetic field BH is defined by
BH = k2Beff/k

2
F .

From the equations (44) and (45) we obtain Beff =
mµ. In the case of a spin unpolarized ground state we
get with the help of µ = µ↑ = µ↓ the approximation
Beff = mµ due to the validity of the equations (44, 45).
In the case of µ↑ 6= µ↓ we obtain the equation (µ↑ +
µ↓)/Beff = 2 to get the same q ≈ 0-integrand in the
second term of equation (43) using the exact PCS (36)
and its approximation (38) in the path integral (20, 39).
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If we compare this equation for µ↓ = 0 with (44) and (45)
we get a factor two difference. This is because we used
for the response functions Π(q, ω, µ = 0) = 0 in equa-
tions (44) and (45). This is only correct for |ω| > 0 (see
e.g. Πa0a0 in (A.2)). One has to notice that Π(q, ω, 0) is
non-zero only on a non-measurable subspace of the (ω, q)-
integral of the second term of Ωee

5/2 (43). Thus Π(q, ω, 0)
is not relevant for the energy calculation and Beff = mµ
is a good approximation for µ↓ 6= 0. The absolute value
|Π(q, ω, µ)| of the response functions (with any vertex
functions) are growing functions of µ for |ω| > 0 and zero
for µ = 0 and |ω| > 0. Therefore, for a determination of
Beff we only consider that part of the q ≈ 0 response func-
tions of the second term of Ωee

5/2 (43) which contains the
larger µ-value µl of µ↑, µ↓. The demand that this part of
the q ≈ 0-integrand is identical by using in the path inte-
gral either the exact PCS (36) or its approximation (38),
results in Beff = mµl. Thus we get for Beff of the spin
polarized as well as the spin unpolarized case the former
values.

In the following we calculate the compressibility, the
effective mass and the excitations of the spin polarized
ν = 2 + 1/φ̃ systems. This is done by a restriction of
the path integral (20, 39) to one spin component (and
inserting µs = 0). We now use standard techniques [4]
to calculate the compressibility, the effective mass and
the excitations of the ν = 2 + 1/φ̃ systems in RPA. To
calculate the compressibility we have to pay attention to
the construction of the path integral of the ν = 2 + 1/φ̃
systems. It is then easy to see that in the above model of
the spin polarized ν = 2+1/φ̃ systems the density-density
correlation function is given by 〈|ρ5/2(r, lε)ρ5/2(r ′, l′ε)|〉.
In this expression ρ5/2(r, lε)) is given by the quantum
mechanical Heissenberg operator of the expression
PCS c

+
↑ (r)P+

CSc↑(r). The Fourier transformed density-
density correlation function could be calculated by
analytical continuation of the Fourier transformed sum
of 〈|σl(r)σl′(r ′)|〉 and (V ee)−1(r − r ′). 〈|σl(r)σl′(r ′)|〉 is
the σσ correlation function of the path integral (20, 39).
With the help of the approximations (A.4) we obtain for
the (retarded) density-density correlation function [32] of
the ν = 2 + 1/φ̃ system in the range ω = 0 and q ≈ 0

〈|Tρ5/2(−q, 0)ρ5/2(q, 0)|〉ret = (46)

4m3µ2

(2Beff)2

(
1− φ̃+ φ̃2

4

)
2π
(

4m3µ2

(2Beff)2 V ee(q)
(

1− φ̃+ φ̃2

4

)
+
(

1 + φ̃2

12

)) ·
Here T is the time ordering operator. From (46) we see
that limq→0〈|Tρ5/2(−q, 0)ρ5/2(q, 0)|〉ret is zero for the
ν = 5/2 system. By considering higher order terms of the
response functions (A.2) in the momentum q and ω = 0 we
get for the ν = 5/2 system 〈|Tρ5/2(−q, 0)ρ5/2(q, 0)|〉ret =
m2q2/(3π(2Beff)2(1 + φ̃2/12)) + O(q4). With the help
of the retarded density-density correlation function it
is possible two calculate the compressibility K5/2 of
the system by using the compressibility sum rule [32]

K5/2 = limq→0(1/ρ2)〈|Tρ5/2(−q, 0)ρ5/2(q, 0)|〉ret/(1 −
(2π)V ee(q)〈|Tρ5/2(−q, 0)ρ5/2(q, 0)|〉ret). Due to this
relation we obtain by the definition of Beff that the
compressibility is given by K5/2 = m/(2πρ2)(1 − φ̃ +
φ̃2/4)/(1 + φ̃2/12). Thus we see that the systems of filling
fraction ν = 2 + 1/φ̃ (φ̃ 6= 2) should be compressible.
Furthermore we get the same RPA compressibility as
HLR calculated for the ν = 1/2 system except for a
factor (1 − φ̃ + φ̃2/4). In the case of filling fraction
ν = 5/2 this is no longer valid. Due to our calculation
the ν = 5/2 system is incompressible. Finally, if we take
into account all terms of P (36) in the RPA calculation
of the compressibility, we get the same expression as (46)
for the ν = 2 + 1/φ̃ systems. This is due to the definition
of Beff (44).

Next we calculate the effective mass m∗ = m (1 −
∂/(∂ω)Σ(kF , 0))/(1+m/kF∂/(∂k)Σ(kF , 0)) in RPA. Here
Σ(k, ω) is the self energy of the fermions of the path in-
tegral (20, 39). Due to the same singular structure of the
transversal (a, a) propagator we obtain for the 2+1/φ̃ sys-
tem with the help of (A.4) a singular effective mass which
is different by a factor 1/(1− φ̃+ φ̃2/4) from the (diverg-
ing) effective mass of the spin polarized ν = 1/2 system
calculated by HLR. The expression for the compressibil-
ity as well as the effective mass suggests that systems of
filling fraction ν = 2 + 1/φ̃ behave similar to the ν = 1/2
system except φ̃ = 2 . This is in agreement with numerical
calculations by Morf and d’Ambrumenil [20].

Like in the ν = 1/2 system one can also derive the
cyclotron excitations for the ν = 2 + 1/φ̃ systems by a
calculation of the density-density correlation function. In
this calculation one has to take into account the response
functions in the limit (A.5).

5 The results of the energy calculation

We have calculated the integrals in (31, 43) using numeri-
cal methods. The results are shown in Figure 2. This figure
shows the Coulomb energy as a function of the strength
α of the Coulomb interaction function V ee(k) = e2/kα.
It contains the calculation of the spin polarized system,
i.e. µ↑ = 2πρ/m, µ↓ = 0, as well as the spin unpolarized
system, i.e. µ↑ = µ↓ = πρ/m, for the ν = 1/2 and the
ν = 5/2 system. The graph reveals a transition from a
spin singlet to a spin polarized ground state at α ≈ 0.9
for the ν = 1/2 system. In the ν = 5/2 system the tran-
sition is at α ≈ 0.6. This coincides qualitatively with the
numerical result of Jain et al. [23], which has be obtained
by exact diagonalization methods on a sphere. Since Jain
et al. employed the Haldanes pseudo potentials VL, where
the strength of the Coulomb interaction is adjusted on
the basis of the ratio of V0 to V1 we can not quantitatively
compare the two results [33]. That is, Jain et al. modify
the strength of the pseudo potentials with the help of α′
in [α′V1, V1, V2, ...]. For the Coulomb interacting ν = 1/2
system the result is α′ = 2.0. For the Coulomb interacting
ν = 5/2 system one gets α′ = 1.45. Jain et al. obtained a
transition from a spin singlet to a spin polarized ground
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Fig. 2. The Coulomb energy of the ground state of the ν = 1/2
and the ν = 5/2 system including the spin constraints S2 = 0
and S2 = Max. The Coulomb energy is given in units of e2/r3

s

where rs is the effective electron distance ρ = 1/(πr2
s).

state for the ν = 1/2 system at α′ = 1.1. They obtained
a good overlap of the ground state wave function with a
spin polarized Chern-Simons wave function for α′ > 1.1.
The same transition was observed at α′ = 1.2 for the
ν = 5/2 system. Because α′ is dominated by the strength
of the interaction of neighbouring electrons, the transition
at α < 1 showing in Figure 2 agrees with the results of
Jain et al. But comparing the value α at the transition
of the ν = 1/2 system with the ν = 5/2 system, α of
the ν = 5/2 system is probably too small. Furthermore,
the slope of the two curves in Figure 2 of spin S2 = Max
(S2 = |Sz|(|Sz | + 1) with Sz = ρF/2) and S2 = 0 of the
ν = 5/2 system differs only slightly. Thus the ν = 5/2
system compared to the ν = 1/2 system can change the
alpha-value of the transition very easily due to the higher
orders of perturbation theory.

Morf shows in [24] using similar numerical diagonal-
ization methods like Jain et al. but considering a larger
number of electrons that the ground state of the ν = 5/2
system is not a Chern-Simons wave function for α = 1
(Coulomb potential). This ground state wave function
shows a large overlap with a spin polarized incompress-
ible paired wave function. For smaller α′, respectively
α, Morf could not identify the ground state wave func-
tion. Recently Rezayi and Haldane [25] could identify this
ground state as a compressible stripped phase by using
similar numerical diagonalization methods like Morf. For
larger α′, respectively α, Morf [24] obtains for the ground
state wave function a large overlap with a spin polarized
Chern-Simons wave function. Based on this observation
he interpreted the experiments of Eisenstein et al. [22],
mentioned in the introduction, that caused on the tilted
magnetic field the effective interaction between two neigh-
bouring electrons is increased. Thus the ground state wave
function of the system changes to a spin polarized Chern-
Simons wave function. At last we mention that Rezayi and
Haldane get in [25] a transition of a compressible stripped

Fig. 3. The Coulomb energy of the ν = 1/2 and the ν = 5/2
system as a function of Sz/(ρF ). The Coulomb energy is given
in units of e2/r3

s where rs is the effective electron distance
ρ = 1/(πr2

s).

phase via an incompressible paired quantum Hall state to
a Chern-Simons ground state near α′ = 1.45 even though
they considered the pure spin polarized ν = 5/2 system.
This shows that the transition is an interaction effect (not
caused by the spin degree of freedom).

Comparing for α = 1 the Coulomb energies Ωee
1/2, Ωee

5/2

of the ground state (spin polarized) with the Coulomb en-
ergies UN1/2, UN5/2 of the numerical calculation method [34]
we obtain

Ωee
1/2 = −0.13 e2ρ

3
2 , UN1/2 = −0.10 e2ρ

3
2 , (47)

Ωee
5/2 = −0.067 e2ρ

3
2 , UN5/2 = −0.088 e2ρ

3
2 . (48)

Figure 3 shows the Coulomb energy as a function of the
variable Sz/(ρF ) for α = 1 of the ν = 1/2 and the ν = 5/2
system. µ↑, µ↓ are given by µ↓ = (1 − 2Sz/(ρF ))/(1 +
2Sz/(ρF ))µ↑ = π(1 − 2Sz/(ρF ))ρ/m. The total spin S2

is determined by S2 = |Sz|(|Sz| + 1). The figure shows
that the spin polarized ground state, i.e. S2 = Max, has a
minimal Coulomb energy of all S2 ground states. This is in
contradiction with recent experimental observations [35]
which shows that the ν = 1/2 ground state is not fully
polarized. Unfortunately these experiments do not show
the degree of polarization of the ground state.

6 Conclusion

We showed that due to a wrong operator ordering in the
path integral of the spin polarized ν = 1/2 system of HLR
we got in [15] an IR divergence in the ground state mag-
netic energy. Therefore we used the well-known Chern-
Simons partition function in an operator formulation to
get a Chern-Simons path integral with a correct operator
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ordering. We calculated the energy of this path integral
in RPA to show that this path integral has a UV infi-
nite magnetic energy. This UV infinity can be corrected
by considering the complete set of Hartree-Fock Feynman
graphs of the Chern-Simons Hamiltonian. When calculat-
ing the energy of the maximal divergent graphs together
with the Hartree-Fock graphs we obtained a well behaved
finite magnetic energy. The Coulomb energy is the same
as in [15].

Next we developed a formalism to calculate the
Coulomb ground state energy of the ν = 1/2 system sub-
jected to a spin S2 constraint and calculated the Coulomb
energy as a function of the interaction strength ∼ e2/kα.
This was done for a spin polarized ground state as well
as for a spin unpolarized ground state. Furthermore, we
formulated a Chern-Simons theory of the ν = 2+1/φ̃ sys-
tems by transforming the interaction operator of the elec-
trons from the second to the lowest Landau level getting a
ν = 1/φ̃ Chern-Simons theory with a modified interaction
operator. We used this Chern-Simons theory to calculate
the compressibility, the effective mass and the excitations
of the spin polarized ν = 2 + 1/φ̃ systems in RPA. We
see from our calculations that ν = 5/2 is a special system
within all ν = 2 + 1/φ̃ systems. We get the same com-
pressibility for the ν = 2+1/φ̃ systems as HLR calculated
for the ν = 1/2 system except for a factor (1− φ̃+ φ̃2/4).
Thus we get that the ν = 2+1/φ̃ systems are compressible
except for φ̃ = 2. Due to our RPA calculation the ν = 5/2
system is incompressible. Next we calculated the effective
mass of the ν = 2+1/φ̃ systems. For these systems we get
a diverging effective mass like HLR got for the ν = 1/2
system with a difference by a factor of 1/(1 − φ̃ + φ̃2/4)
(φ̃ 6= 2). The effective mass of the ν = 5/2 system is the
same as HLR calculated for the ν = 1/2 system with-
out interaction between the electrons. These calculations
(compressibility and effective mass) are in agreement with
numerical calculations by Morf and d’Ambrumenil [20]
which show that systems of filling fraction ν = 2 + 1/φ̃
behave similar to the ν = 1/2 system except for φ̃ = 2.
Like in the calculation of the cyclotron excitations of the
ν = 1/2 system by HLR we also obtain the cyclotron ex-
citations for the ν = 2 + 1/φ̃ systems in RPA.

Next we used the ν = 5/2 Chern-Simons theory to cal-
culate the Coulomb energy as a function of the interaction
strength for the spin polarized as well as the spin unpolar-
ized ground state in RPA. We get for the ν = 1/2 as well
as the ν = 5/2 system a transition from a spin unpolarized
ground state to a polarized ground state at α < 1. This
agrees with calculations using numerical diagonalization
techniques. Furthermore, for α = 1 we get a good corre-
spondence to the energies calculated by these numerical
methods. At last we calculated the ground state Coulomb
energies for the ν = 1/2 and the ν = 5/2 system as a
function of the total spin S2 for α = 1. We saw that for
both systems the maximal spin polarized ground states is
actually in the Coulomb energy minimum of all S2 states
which is not in agreement with recent experimental obser-
vations [35].

Summarizing, already on the level of the RPA, we can
see spin effects for both the ν = 1/2 and the ν = 5/2
systems which agree with numerical simulations. As men-
tioned earlier it is supposed that the Coulomb ν = 5/2
Chern-Simons ground state wave function (α = 1) is of
a Pfaffian type. Thus the goal still is to develop a theory
of the Coulomb interacting ν = 5/2 system which has a
mean-field ground state of the Pfaffian wave type.
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for many helpful discussions during the course of this work.
Further we have to acknowledge the financial support by the
Deutsche Forschungsgemeinschaft, Graduiertenkolleg ”Quan-
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Appendix A: The response functions
for the ν = 1/2 and the ν = 5/2 system

In this appendix we calculate the response functions for
the ν = 1/2 and the ν = 5/2 system. These response
functions were used in the energy formulas (9, 31, 43).
These response functions are defined by

Πσσ(q, ω, µ) (A.1)

=
1

(2π)3

∫
dΩ d2k (k + q)2 k2G(k + q, Ω + ω)G(k, Ω) ,

Πσa0(q, ω, µ) = Πa0σ(q, ω, µ)

=
1

(2π)3

∫
dΩ d2k (k2 + k · q) G(k + q, Ω + ω)G(k, Ω) ,

Πσa(q, ω, µ) = −Πaσ(q, ω, µ)

= − i
(2π)3

∫
dΩ d2k

(k× q)2

mq
G(k + q, Ω + ω)G(k, Ω) ,

Πa0a0(q, ω, µ)

=
1

(2π)3

∫
dΩ d2k G(k + q, Ω + ω)G(k,Ω) ,

Πaa(q, ω, µ)

=
1

(2π)3

∫
dΩ d2k

(k× q)2

m2q2
G(k + q, Ω + ω)G(k, Ω) .

G is the Green’s functionG(q, ω) = −1/(iω−q2/(2m)+µ).
After performing the integrals in (A.1) one gets with the
help of the substitution u = q2

2m

Π1
σσ(q, ω, µ) =

m3

4π

∑
σ∈{−1,1}

[
+

4
30u3

(u+ iσω)5 (A.2)

− 1
15u3

√
(u+ iσω)2 − 4uµ

×
(
2(u+ iσω)4 + 4(u+ iσω)2uµ+ 12 u2µ2

) ]
,

Π2
σσ(q, ω, µ) =

m3

4π

∑
σ∈{−1,1}

[
2

(iσω)
3u2

{
(u+ iσω)3

−
√

(u+ iσω)2 − 4uµ
(
(u+ iσω)2 + 2uµ

)}
− 4µ2

]
,
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Π1
σa0(q, ω, µ) =

m2

4π

∑
σ∈{−1,1}

[
− 1

3u2
(u+ iσω)3

+
1

3u2

√
(u+ iσω)2 − 4uµ

(
(u+ iσω)2 + 2uµ

)]
,

Π2
σa0(q, ω, µ) =

m2

4π

∑
σ∈{−1,1}

[
(u+ iσω)

u

×
(

(u+ iσω)−
√

(u+ iσω)2 − 4uµ
)
− 2µ

]
,

Πσa(q, ω, µ) = −im
3
2
√

2u Πaa(q, ω, µ) ,

Πaa(q, ω, µ) =
1

2π

∑
σ∈{−1,1}

[
1

12u2

{
(u+ iσω)3

−
√(

(u+ iσω)2 − 4uµ
)3
}
− µ

2

]
,

Πa0a0(q, ω, µ) =
m

2π

∑
σ∈{−1,1}

[
1
2u

√
(u+ iσω)2 − 4uµ− 1

2

]
.

Πσσ and Πσa0 are given by

Πσσ = Π1
σσ +Π2

σσ, Πσa0 = Π1
σa0 +Π2

σa0 . (A.3)

For calculating the compressibility, the effective mass and
the excitations we have to continue analytically the re-
sponse functions Π to imaginary frequencies [4]. In the
range ω � q2

2m and q � kF we get

Πσσ(q,−iω, µ) = −4m3 µ2

2π
, Πσa0(q,−iω, µ) = −2m2 µ

2π
,

Πσa(q,−iω, µ) = i q
mµ

2π
, Πa0a0(q,−iω, µ) = −m

2π
,

Πaa(q,−iω, µ) =
q2

24πm
− µ

2π
− i
√

2mµ
ω

2πq
·

(A.4)

By multiplying every value in (A.4) by ω/(qkF ), one can
calculate the asymptotic of the next term in the expansion
of the response functions. Comparing Πaa in (A.4) with
the corresponding term of HLR [4], the result differs by a
factor two in the first term of Πaa. This difference is also
observed in the case of the ν = 1/2 Chern-Simons system
with impurities [36].

Furthermore, we need the analytical continued re-
sponse functions in the range q2

2m � ω and q � kF for
a calculation of the cyclotron excitations. In this range
we get

Πσσ(q,−iω, µ) = O

(
q2

mω

)
, Πσa0(q,−iω, µ) = O

(
q2

mω

)
,

Πσa(q,−iω, µ) = O

(
q2

mω

)
, Πa0a0(q,−iω, µ) =

µ

2π
q2

ω2
,

Πaa(q,−iω, µ) +
µ

2π
=

µ

2π
·

(A.5)
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